Formalism description:
Formulas $\varphi$ of cone logic are generated by the following abstract syntax:
where $p$ denotes a propositional letter.
Kripke-style semantics:Formulas of cone logic are evaluated over regions of the form $\mathbb{P} = ( \mathsf{P} , \sigma)$ where $\mathsf{P} \subseteq \mathbb{Q} \times \mathbb{Q}$ and $\sigma: \mathsf{P} \to 2^{Var}$ assigns a subset of a set of all propositional variables $Var$ to each point from $\mathsf{P}$.
The satisfaction relation $\models$ for a region $\mathbb{P}$ and a point $(x,y) \in \mathsf{P}$ is defined as follows:
$\mathbb{P}, (x,y) \models p$ | iff | $p \in \sigma \big( (x,y) \big); $ |
$\mathbb{P}, (x,y) \models \neg \varphi$ | iff | $\mathbb{P}, (x,y) \not\models \varphi; $ |
$\mathbb{P}, (x,y) \models \varphi \lor \psi $ | iff | $\mathbb{P}, (x,y) \models \varphi \text{ or } \mathbb{P}, (x,y) \models \psi; $ |
$\mathbb{P}, (x,y) \models $ $\varphi $ | iff | $\text{there is } (x',y') \in \mathsf{P} \text{ such that } x' < x, y' < y, \text{and } \mathbb{P}, (x',y') \models \varphi;$ |
$\mathbb{P}, (x,y) \models $ $\varphi $ | iff | $\text{there is } (x',y') \in \mathsf{P} \text{ such that } x' > x, y' < y, \text{and } \mathbb{P}, (x',y') \models \varphi;$ |
$\mathbb{P}, (x,y) \models $ $\varphi $ | iff | $\text{there is } (x',y') \in \mathsf{P} \text{ such that } x' < x, y' > y, \text{and } \mathbb{P}, (x',y') \models \varphi;$ |
$\mathbb{P}, (x,y) \models $ $\varphi $ | iff | $\text{there is } (x',y') \in \mathsf{P} \text{ such that } x' > x, y' > y, \text{and } \mathbb{P}, (x',y') \models \varphi;$ |
$\mathbb{P}, (x,y) \models $ +$\varphi $ | iff | $\text{there is } (x',y') \in \mathsf{P} \text{ such that } x' ≤ x, y' ≤ y, \text{and } \mathbb{P}, (x',y') \models \varphi;$ |
$\mathbb{P}, (x,y) \models $ +$\varphi $ | iff | $\text{there is } (x',y') \in \mathsf{P} \text{ such that } x' ≥ x, y' ≤ y, \text{and } \mathbb{P}, (x',y') \models \varphi;$ |
$\mathbb{P}, (x,y) \models $ +$\varphi $ | iff | $\text{there is } (x',y') \in \mathsf{P} \text{ such that } x' ≤ x, y' ≥ y, \text{and } \mathbb{P}, (x',y') \models \varphi;$ |
$\mathbb{P}, (x,y) \models $ +$\varphi $ | iff | $\text{there is } (x',y') \in \mathsf{P} \text{ such that } x' ≥ x, y' ≥ y, \text{and } \mathbb{P}, (x',y') \models \varphi;$ |
Spatial reasoning, interval temporal reasoning.
Comments and references:Cone logic is introduced in (Montanari et al. 2009). It is proved to be decidable, and in particular PSpace-complete. Moreover, it is expressive enough to subsume meaningful interval temporal logics.